Weighted Norm Inequalities for Fractional Operators

نویسنده

  • MARÍA MARTELL
چکیده

We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels. Indiana Univ. Math. J. 57 (2008), no. 4, 1845--1870

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

2 5 M ar 2 00 7 WEIGHTED NORM INEQUALITIES FOR FRACTIONAL OPERATORS

We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels.

متن کامل

er si on 2 - 4 F eb 2 00 8 WEIGHTED NORM INEQUALITIES FOR FRACTIONAL OPERATORS

We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels.

متن کامل

m at h . C A ] 5 F eb 2 00 8 WEIGHTED NORM INEQUALITIES FOR FRACTIONAL OPERATORS PASCAL

We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels.

متن کامل

Sharp Weighted Bounds for Fractional Integral Operators

The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp bounds are obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008